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A B S T R A C T   

Square-root-of-time model, constructed based on the growth of solid electrolyte interface layer, is an extensively- 
used semi-empirical model for remaining useful life (RUL) prediction of lithium-ion batteries. However, over the 
life cycle, the battery capacity degradation is not always under a linear relationship to the 1/2 power of the cycle 
number. In practice, its initial state, fresh or old, is rarely considered during RUL prediction. To address these 
concerns, a three-step mathematical transformation is proposed to improve the flexibility of square-root-of-time 
model. With initial battery state described by an initial cycle parameter, a power model is proposed to capture 
the battery capacity degradation. The parameter properties of proposed power model are then discussed in 
depth. Combining an offline parameter estimator and an online particle filter algorithm, a two-phase prediction 
framework is developed for onboard RUL prediction. Finally, a charge-discharge experiment is conducted, and its 
comprehensive experimental datasets of lithium iron phosphate batteries are analyzed. Results show that the 
proposed power model is superior to other existing degradation models on model fitting and extrapolation ac
curacy; and compared to the traditional square-root-of-time model, the RUL prediction accuracy is significantly 
improved.   

1. Introduction 

Lithium-ion batteries, as the main power storage devices of electric 
vehicles (EVs), have attracted more and more attention from the in
dustry due to its advantages such as high energy density, high power 
density, and long lifetime [1]. As a battery’s performance decreases over 
repeated usage, its remaining useful life (RUL) is of vital importance for 
the guidance of safe battery operation and effective performance opti
mization [2]. Accurate RUL information can also provide users ample 
forewarning of imminent battery failure and thus significantly reduce 
battery-power system risks. 

1.1. Literature review 

Existing methods for RUL prediction can be mainly divided into two 
categories: data-driven approach and model-based approach [3]. The 
data-driven approach regards the battery system as a black box and infer 
battery RUL or lifetime directly from features extracted from time, 

current, voltage, etc. [4,5]. Various methods have been proposed to 
model the nonlinear relationship between battery RUL and input fea
tures, including statistical analysis [6], signal processing [7], and arti
ficial intelligence (AI) [8]. For example, Ardeshiri et al. [9] put forward 
a stacked bidirectional long short term memory algorithm to predict 
battery RULs through time-domain features. Xu et al. [10] employed a 
stacked denoising autoencoder algorithm to predict battery lifetime 
through a series of health features extracted from early cycle data. The 
data-driven approaches provide great flexibility and model-free char
acteristics, while its accuracy depends heavily on the quality and 
quantity of available training data. As training samples usually do not 
cover all possible operating conditions, the model-based approach, with 
self-correction property, is a better choice for applications with limited 
historical samples. 

The model-based approaches establish mathematical models to 
describe the degradation behaviors of lithium-ion batteries, and then use 
filter techniques, such as particle filter (PF) [11], to update the model 
parameters and predict battery RUL accordingly. The mathematical 
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models, as the key to the model-based approaches, can be divided into 
mechanism models, empirical models, and semi-empirical models [12]. 
The mechanism models focus on battery aging mechanisms and describe 
the battery physical and chemical reactions with arrays of equations. 
Darling et al. [13] estimated the reaction exchange current density and 
solid-state diffusion coefficient of lithium-ion batteries. Dai et al. [14] 
developed a capacity degradation model to depict the manganese 
dissolution of lithium-ion batteries. Xu et al. [15] proposed an Arrhenius 
temperature model and predicted the battery RUL via Wiener process. 
The aging mechanisms are usually diverse and require expert knowledge 
[16]. Typically, the mechanism models require intensive computations, 
and thus may be too slow to be employed for real-time online applica
tion [12]. 

As a comparison, the empirical models exploit historical data to 
predict battery future degradation behaviors without considering the 
physicochemical properties [17]. He et al. [18] put forward a two-term 
exponential model to model battery capacity degradation and predicted 
the RULs via Bayesian Monte Carlo and Dempster-Shafer theory. Micea 
et al. [19] proposed a quadratic polynomial model to fit the degradation 
data and predict battery RULs. Xing et al. [20] fused a polynomial model 
and a two-term exponential model to fit the capacity degradation and 
predict the RULs based on PF framework. Wang et al. [21] used a 
one-term exponential model to fit the capacity degradation path of the 
lithium-ion batteries. Yang et al. [22] put forward a two-term loga
rithmic model to capture the degradation curve of lithium-ion nickel 
manganese cobalt oxide cells and used a PF to predict battery RULs. 
With no consideration of physical or chemical mechanism basis, the 
empirical models may result in weakness of model interpretability and 
portability. 

As a balance between mechanism models and empirical models, the 
semi-empirical models are built based on important internal mecha
nisms and weigh up the model accuracy, computation load, and model 
extrapolation [23]. For lithium-ion phosphate batteries, the major 
degradation mechanism is the loss of lithium inventory (LLI), which is 
caused by side reactions including impedance increase [24], lithium 
plating [25], SEI growth [26], etc.. Broussely et al. [27] found the 
growth of SEI layer follows a linear relationship to the square of time and 
proposed a square-root-of-time model to characterize the battery ca
pacity degradation. By studying the relationship between coulombic 
efficiency (CE) and LLI, Yang et al. [12] put forward a CE model to 
describe the degradation of lithium-ion batteries. In between, the 
square-root-of-time model receives extensive attention from researchers 
and engineers due to its simple structure and good fitting ability. Based 
on the square-root-of-time model, Schmalstieg et al. [28] considered the 
effect of discharge rate and further put forward a two-stage aging model 
for lithium nickel manganese cobalt oxide batteries; Han et al. [29] 
considered the effect of temperature and proposed a temperature-based 
degradation model to estimate battery capacity. 

1.2. Proposed methodology 

Though the square-root-of-time model at present achieves acceptable 
prediction results, to the best of our knowledge, there are still two issues 
with its traditional structure. First, the assumption that the battery ca
pacity is linear to the 1/2 power of the cycle number may not always be 
true. As reported in [12], the actual capacity degradation not only de
viates from the square-root-of-time relationship but its rate also changes 
when the cycle number increases. Thus, the linear relationship to the 
1/2 power of the cycle number is not good enough to accurately describe 
the whole-life capacity degradation. Second, the cycle number k in the 
test may not be the actual battery life cycle, i.e., the battery has been 
used or tested before the experiment. This common-seen problem, also 
illustrated in other work before (e.g. [30]), will influence the prediction 
accuracy. To address these two issues, in this paper, we improve the 
traditional square-root-of-time model by three-step mathematical 
transformation and put forward a power model to describe the 

whole-life capacity degradation. Specifically, the power exponent 1/2 in 
the square-root-of-time model is extended to a model parameter and a 
bias is then added to the cycle number. The model parameter properties 
are then theoretically discussed in depth. The fitting and extrapolation 
performance is verified with collected experimental degradation data 
and further compared with existing common-used degradation models. 

To employ the proposed model for online RUL prediction, a PF is 
adopted in this paper. The PF plays an important role in the prediction of 
nonlinear and non-Gaussian systems [21,31], and has been widely 
employed for battery RUL prediction [20,32]. According to the Bayes 
theorem, the prior distribution and observed data directly decide the 
posterior distribution results, which means the choice of prior distri
bution plays an essential role in the prediction result. As the prior dis
tribution in PF is reflected in the determination of initial parameter, an 
offline parameter estimator is proposed to determine the initial model 
parameter. The output of offline estimator is used as the input of PF 
algorithm, which improves the effectiveness of traditional PF algorithm. 
The performance of proposed method on RUL prediction is then inves
tigated and compared with the square-root-of-time model and CE model. 
Results show that the RUL prediction based on the proposed method has 
better accuracy than these two models. 

The rest of this paper is organized as follows: Section 2 introduces the 
proposed degradation model. Section 3 presents a two-phase RUL pre
diction method based on offline parameter estimator and online PF al
gorithm. Section 4 gives the experimental results of proposed method on 
both modeling and RUL prediction. Finally, Section 5 concludes the 
whole work. 

2. Capacity degradation model 

Based on the common-used square-root-of-time model, a new power 
model is proposed in this section. To verify its performance on degra
dation modeling and RUL prediction, six representative degradation 
models are shortly reviewed in Section 2.2. 

2.1. Proposed power model  

(1) Original square-root-of-time model 

The square-root-of-time model assumes the increase of the SEI film 
thickness is proportional to the square root of time and further uses the 
thickening of SEI film to model the loss of lithium inventory. The 
mathematical expression of this model is denoted as 

Yk = ak1/2 + b, (1)  

where a and b are unknown parameters of this model.  

(2) Proposed power model 

The pros and cons of square-root-of-time model have been discussed 
previously. To address the two major concerns on the degradation rate 
and initial cycle, the traditional square-root-of-time model is improved 
by three steps as follows: 

Step 1: Extend the power 

To address the first concern, we extend the power exponent 1/2 in 
the square-root-of-time model to an intermediate variable parameter c0: 

Yk = ak1/2 + b→Yk = a0kc0 + b0, (2)  

where a0 and b0 denote the intermediate variables to substitute variables 
a and b. Based on the fitting parameter c0, the improved model can adapt 
to the degradation curve with different rates. 

Step 2: Introduce the parameter considering the initial state 

F. Meng et al.                                                                                                                                                                                                                                    



Reliability Engineering and System Safety 237 (2023) 109361

3

To address the second concern, an intermediate parameter d0 is 
introduced to describe the real cycle number k+ d0: 

Yk = a0kc0 + b0→Yk = a0(k + d0)
c0 + b0. (3) 

The real cycle number k+ d0 can not only consider the cycle number 
before the experiment but also consider the battery difference in the 
initial state. 

Step 3: Eliminate the intercept parameter 

This step is devoted to eliminating parameter b0 in Eq. (3). This 
elimination is supported by three reasons: 1) After fitting real degra
dation data in Fig. 1-2 and Tables 1-2, we found parameter b0 in Eq. (3) 
has little effect on fitting results including the sum of squared errors 
(SSE), R-square, adjusted R-square (Adj. R-square) and RMSE. 2) 
Theoretically, parameter b0 indicates the influence of some environ
mental and noise factors on the battery capacity and cycle number k can 
compensate the capacity influence. Since we introduce parameter d0 in 
Step 2, the change of parameter d0 can be effectively reflected on cycle 
number b0. Thus, the influence of capacity can be indirectly compen
sated by cycle number b0. Of course, besides cycle number b0, linear 
factor parameter a and nonlinear factor parameter b will also affect the 
accurate fitting. 3) After eliminating the parameter b0, the mathematical 
form becomes concise and can avoid the overfitting problem when the 
sample size is limited. Furthermore, Lin et al. [30] also empirically 
provided the same mathematical form for different scenarios and 

methods without the intercept parameter. In his paper, this mathemat
ical form is served as the scale parameter of the gamma process, and the 
scale parameter of the gamma process depicts the degradation quantity 
of each jump in the stochastic process. However, in this paper, the 
mathematical form is derived and introduced to depict the global 
degradation path. Although the application scenarios and methods are 
totally different in Lin’s paper and this work, the mathematical form is 
accidently consistent, which indicates the strong fitting and prediction 
ability of this mathematical form. Based on the above reasons, we 
eliminate parameter b0 and get Eq. (4): 

Yk = a0(k + d0)
c0 + b0→Yk = a0(k + d0)

c0 . (4) 

Finally, substitute the intermediate variables a0, d0 and c0 with new 
parameters a, b, and c. The capacity degradation model we put forward 
in this paper can be re-organized as 

Yk = a0(k + d0)
c0 ̅̅̅̅̅̅̅→←̅̅̅̅̅̅̅

re− organize
Yk = a(k + b)c, (5)  

where new parameters a, b, c respectively denote the scale parameter, 
location parameter, and shape parameter of the proposed model. The 
above procedure finishes the transformation from the square-root-of- 
time model Yk = ak1/2 + b to the proposed model Yk = a(k+ b)c.  

(3) Discussion on model parameters 

Compared with square-root-of-time model, the proposed model in 

Fig. 1. Fitting comparison between Yk = a0(k+ d0)
c0 and Yk = a0(k+ d0)

c0 + b0 on (a) real data1 and (b) real data 2.  
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Eq. (5) uses parameter c to adjust the shape of capacity degradation. 
When the shape parameter c equals 0.5, the proposed model can be seen 
as a similar generalized model to the traditional square-root-of-time 
model. On the other hand, when parameter c equals a different num
ber, the proposed model can fit different types of degradation curves. 

For example, in Fig. 1, when c < − 1, it is a monotonically decreasing 
convex curve. When − 1 < c < 0, it denotes a monotonically decreasing 
concave curve. With the change of parameter c, the capacity degradation 
rate is significantly different. 

Parameter b is a constant term, which can adjust for the cycle number 
with an unknown initial cycling value. For instance, the fitting result of a 
battery that has been used for many cycles is consistent with the result of 
the same battery with the initial cycle. In addition, parameter a depicts 
the linear relationship of capacity with cycle number. 

Thus, the proposed model has good potential to fit different types of 
degradation paths. For example, Lin et al. [30] utilized the power model 
to depict the scale parameter of the gamma process. The proposed 
Gamma process model can better fit the degradation data than the 
compared one-phase gamma process model in terms of the Akaike in
formation criterion, and the proposed model accurately predicts the 
degradation behavior of four battery cells. Thus, the proposed model can 
be regarded as taking into account more information than the traditional 
model. 

The influence of each parameter change on the power model is dis
cussed in Fig. 2. In Fig. 2(a), we fix the parameter b and c, and then 
change parameter a. It can be seen that the scale of the curve is stretched 
or compressed in the direction of the Y-axis. Thus, parameter a is called 
the scale parameter. The next Fig. 2(b) denotes the condition with pa
rameters a and c fixed, and parameter b changed. The curve translates 
along the x-axis, which is equivalent to adding or decrease the cycle. 
Thus, parameter b is named as the location parameter. Finally, in Fig. 2 
(c), as parameter c changes when parameters a and b are fixed, we can 
see the curvature increases or decreases, and then the curve shape 
changes correspondingly. Thus parameter c is named as the shape 
parameter. 

2.2. Other existing degradation models 

To verify the performance of proposed model on degradation 
modeling and RUL prediction, a total of six existing representative 
models listed in Table 2 are chosen for comparison in this work. In short, 
the square-root-of-time model [27] and CE model [12] are both typical 
semi-empirical models. To validate the modeling performance of power 
model sufficiently, four empirical models including two-term logarith
mic model [22], one-term exponential model [21], two-term exponen
tial model [18], and quadratic polynomial model [19], are selected. The 
comparative results on model fitting and RUL prediction will be pre
sented on Section 4. In this section, we give a brief review on selected 
five other models.  

(1) Coulombic efficiency-based model 

The CE model was a semi-empirical model derived from the rela
tionship between columbic efficiency and degradation rate [12]: 

Yk = abk + c, (6)  

where a, b, c are model unknown parameters and b indicates the CE of 
lithium-ion battery; k is the cycle time and Yk denotes the maximum 
available capacity in cycle k. In this paper, we use this model as a 
comparison method because the CE model was reported to effectively 
capture the convex degradation trend of lithium-ion batteries.  

(2) Two-term logarithmic model 

The two-term logarithmic model was first put forward by Yang et al. 
[22]. This model can effectively depict the degradation path with 
two-phase behaviors, which includes a fast degradation phase and a 
slow degradation phase. The model is formulated as: 

Yk = a+ blog(k+ 1) + clog(1 − k / (d+ 2)), (7) 

Fig. 2. Influence of each parameter change on the power model. (a) Parameter 
a changed and parameters b and c fixed. (b) Parameter b changed and param
eters a and c fixed. (c) Parameter c changed and parameters a and b fixed. 

Table 1 
Quantitative indices of fitting results for real data in Fig. 1.  

Data Fit type SSE R- 
square 

Adj. R- 
square 

RMSE 

Real data 
1 

Yk = a0(k+ d0)
c0 0.0012 0.9997 0.9997 0.0013 

Yk = a0(k+ d0)
c0 +

b0 

0.0012 0.9997 0.9997 0.0012 

Real data 
2 

Yk = a0(k+ d0)
c0 0.0030 0.9999 0.9999 0.0011 

Yk = a0(k+ d0)
c0 +

b0 

0.0030 0.9999 0.9999 0.0011  

Table 2 
Selected degradation models for performance comparison.  

Models Explanation Mathematical Expression 

Model 1 CE model Yk = abk + c 
Model 2 Square-root-of-time model Yk = ak1/2 + b 
Model 3 Two-term logarithmic model Yk = a+ blog(k+ 1)+

clog(1 − k/(d+ 2))
Model 4 Two-term exponential model Yk = aebk + cedk 

Model 5 Quadratic polynomial model Yk = ak2 + bk+ c 
Model 6 One-term exponential model Yk = aebk  
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where a, b, c, and d are unknown parameters of the model.  

(3) One-term exponential model 

The exponential function is a traditional empirical model, which 
models the increase of internal impedance caused by SEI thickening with 
the iterations growing. Since battery degradation fade is closely related 
to the internal impedance, one term exponential model is an effective 
model to depict the degradation path [21,33]. This model is expressed 
as: 

Yk = aebk, (8)  

where a and b are unknown parameters.  

(4) Two-term exponential model 

Regression results of several experimental data indicate that another 
exponential model can depict the battery degradation fade more accu
rately. This model, named a two-term exponential model, is denoted as 
[18,32,34] 

Yk = aebk + cedk, (9)  

where a, b, c, and d are unknown parameters of the model.  

(5) Quadratic polynomial model 

Micea et al. first used the quadratic polynomial model as an empir
ical model to fit the data between the stored maximum capacity function 
Yk and charge/discharge cycle k [19]. This model is given by 

Yk = ak2 + bk + c, (10)  

where a, b, and c are unknown parameters of the model. 

3. Battery remaining useful life prediction 

In this section, a two-phase prediction method including a statistical 
inference and a Bayesian filter is developed for battery RUL prediction 
based on the proposed model. The statistical inference is aimed to obtain 
the point estimators of the parameters based on the observed data. Then 
the point estimators are served as the initial value of Bayesian filter to 
conduct online RUL prediction. 

3.1. Statistical inference and offline parameter estimation 

The statistical inference of the proposed model is given in this sec
tion. To transform the complex nonlinear relationship into a linear 
relationship, first, take logarithms on both sides of the model Eq. (5), 

lnYk = ln(a(k + b)c) = cln(k+ b) + lna. (11) 

Note that lnYk has a linear relationship with ln(k + b). Thus, calcu
late their Pearson’s correlation coefficient. 

r(lnYk, ln(k+ b)) =
Cov(lnYk, ln(k + b))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(lnYk) ∗ Var(ln(k + b))

√ . (12) 

However, because of the existence of noise, the Pearson’s correlation 
coefficient is less than 1. To eliminate the interference of the noise, we 
maximize the absolute value of the Pearson’s correlation coefficient to 
make the model better fit the degradation capacity. Thus, the estimator 
of b can be denoted as 

b̂ = argmax
b

|Cov(lnYk, ln(k + b))|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(lnYk) ∗ Var(k + b)

√ . (13) 

Next, the substitute estimator b̂ into Eq. (11), we can get 

lnYk = cln(k+ b̂) + lna. (14) 

See ln(k+b̂) as an independent variable, and lnYk as a dependent 
variable. From the Eq. (14), the independent variable and dependent 
variable have a linear relationship. Thus, according to Gaussian-Markov 
Theorem (For example, see Rao [35]), conduct linear regression be
tween independent variable ln(k+b̂) and dependent variable lnYk, we 
can get 

⎧
⎪⎨

⎪⎩

ĉ =

∑n

i=1
(ln(ki + b̂) − ln(k + b̂))(lnYki − lnYk)
∑n

i=1
(ln(ki + b̂) − ln(k + b̂))2

,

l̂na = lnYk − ĉln(k + b̂).

(15) 

Further, after simple transformation, 

â = elnYk − ĉln(k+b̂). (16) 

Thus, we finish deriving the expressions of point estimators â, b̂, ĉ. 
The proposed estimation method can be compared with the 

commonly used least square estimation (LSE). In fact, from the 
perspective of computation efficiency, the proposed method has lower 
computation time than LSE, this is because except for a single variable 

Fig. 3. Parameter estimation and fitting results obtained by (a) the proposed method and (b) LSE.  
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optimization, other procedures can be expressed as an analytic mathe
matical expression in the proposed method. However, the LSE needs a 
three-variable optimization, this greatly improves the computation 
complexity. To verify the estimation efficiency and accuracy for the 
proposed estimation method and LSE, we also conduct an experiment as 
follows: 

We adopt 232 cycle data to verify the effectiveness of the proposed 
model. For fitting accuracy, the results are shown in the following Fig. 3: 

In the same computing environment, for LSE, the R-square equals 
0.9984 and the computing time is 0.501s; for the proposed method, the 
R-square equals 0.9984, and the computing time is 0.038s. From the two 
results, we can see that the fitting results are almost the same, but the 
consumed time of the proposed method is much less than LSE. 
Computing time is an important index for the real-time online prediction 
method. Thus, the proposed method is recommended. 

3.2. Online RUL prediction based on particle filter 

To employ the proposed model for online RUL prediction in real- 
lifetime applications, the following issues must be considered: 1) 
When using a new batch of cells, there is little information on the model 
parameters. 2) Because there exists a difference between cell to cell, it is 
not suitable to apply the fitted parameters in the laboratory directly to 
the EV. 3) Environmental noise, measurement error of sensors, and 
operational factors lead to uncertainties, which render the proposed 
model inaccurate. 4) Real-time response needs a great demand for 
computing speed, and this makes the offline parameter estimation 
inapplicable. To address these issues, a Bayesian filtering framework is 
proposed incorporating the proposed model for online battery RUL 
prediction. The specific procedure of the framework includes model 
construction, state estimation based on Bayesian filter, and posterior 
distribution calculation using PF.  

(1) Model construction 

First assume the state transformation process of battery capacity 

subject to the first-order Markov process, which follows two basic 
properties 1) State parameter at the current cycle only depends on the 
state at the last cycle xk. 2) Observed capabilities Ck are independent of 
each other, and only determined by the state xk at cycle k. Based on these 
two properties, we construct the state-space function. The parameter 
vector xk = [ak, bk, ck]

T is chosen as the system state at cycle k. According 
to the Markov assumption of the system model, the k state of the system 
only depends on its last state k-1, and we assume the process from k-1 to 
k is subject to a zero-mean Gaussian random walk. Thus, the systems 
state function can be denoted as 

xk = xk− 1 + ε =

⎡

⎣
ak
bk
ck

⎤

⎦ =

⎡

⎣
ak− 1
bk− 1
ck− 1

⎤

⎦+

⎡

⎣
ε0
ε1
ε2

⎤

⎦,

⎡

⎢
⎢
⎣

ε0 ∼ N
(
0, σ2

0

)

ε1 ∼ N
(
0, σ2

1

)

ε2 ∼ N
(
0, σ2

2

)

⎤

⎥
⎥
⎦, (17)  

where ε = (ε0, ε1, ε2) denotes the additive Gaussian noise with a stan
dard deviation (σ0,σ1,σ2). In fact, the battery capacity only depends on 
the state function in Eq. (17), and their relationship can be depicted 
using the model proposed in Section 2. However, when measuring the 
battery capacity, there exist uncertainties caused by sensors measure
ment, manual operation, environmental factors and so on. Thus, an 
additive Gaussian noise v is also assumed to refer to the measurement 
uncertainty. Then, the measurement function can be denoted as 

Yk = h(xk) + v = ak(k + bk)
ck + v , v ∼ N

(
0, σ2

v

)
, (18)  

where σv denotes the standard deviation of the Gaussian noise v. Here we 
assumed measurement Yk is noisy, that’s to say there exist some mea
surement errors caused by the sensors. In this framework, the model 
parameters are chosen as states, which are unobserved and will change 
with battery degradation. The measurement Yk is the capacity of the 
battery. In the experiment, the battery capacity can be measured at 
every cycle. Then the predicted Yk (prior information) and the measured 
Yk (the likelihood information) are used to estimate the updated state 
parameters (posterior information). Finally, the updated state parame
ters (posterior information) are used to make further predictions.  

(2) State estimation based on Bayesian filter 

The Bayesian filter, which is implemented to estimate the system 
state xk, can be divided into two steps: Prediction and update. Specif
ically, first, predict the distribution of the hidden state function xk based 
on (k-1)th observation Yk− 1. Next, update the distribution of the hidden 
state function utilizing prediction and kth observation Yk. These two 
steps can be expressed as follows: 

Prediction: 

p(xk|Y1 : k− 1) =

∫

p(xk|xk− 1)p(xk− 1|Y1 : k− 1)dxk− 1. (19) 

Update: 

p(xk|Y1 : k) =
p(Yk|xk)p(xk|Y1 : k− 1)∫

p(Yk|xk)p(xk|Y1 : k− 1)dxk
. (20)    

(3) Posterior distribution calculation using PF 

However, when the Bayesian filter is implemented to estimate the 
state, a common problem often occurs that the posterior distribution is 
too complicated to analyze. Thus, the PF, as a Sequential Importance 
Monte Carlo Sampling method, is an effective method to overcome this 
problem. PF essentially solves this problem by looking for a group of 
random samples propagating in the state space to approximate the 
probability density function (PDF), then using these samples to substi
tute the integral operation, and finally obtaining the minimum variance 
estimation of the system state function. These processes can be 

Fig. 4. Experimental condition.  

Table 3 
Battery parameters.  

Battery Type: BAK 18,650 LFP battery 

Anode Graphite 

Nominal Voltage 3.2V 
Nominal Capacity 1 Ah 
Upper/Lower Cutoff Voltage 3.6 V/2V 
End of Charge Current 0.05C 
Maximum Continuous Discharge Current 30A  
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expressed in Eqs. (21) and (22). 

p(xk|Y1 : k) ≈
∑Ns

i=1
ω̃ip

k δ
(

xk − xip
k

)
, (21)  

ω̃ip
k =

ωip
k

∑Ns
i=1ωip

k

, (22)  

where δ(⋅) denotes the Dirac delta function and ω̃ip
k denotes the 

normalized weight. Next, the system state function can be approximated 
as 

xk =

∫+∞

− ∞

xkp(xk|Y1 : k)dxk =
∑Ns

i=1
ω̃ip

k xip
k . (23) 

Fig. 5. Fitting and extrapolation results. 1) 15% for fitting and 85% for extrapolation: (a-b) cell A1; (c-d) cell A2. 2) 5% for fitting and 95% for extrapolation: (e-f) cell 
A1; (g-h) cell A2. 
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The weight of each particle is updated as follows, 

ω̃ip
k ∝ω̃ip

k− 1

p
(

Yk|x
ip
k

)
p
(

xip
k |x

ip
k− 1

)

π
(

xip
k |x

ip
0:k− 1,Y1 : k

) , (24)  

where π(xip
k |x

ip
0:k− 1,Y1:k) = π(xip

k |x
ip
0:k− 1,Yk) denotes the importance dis

tribution. A most popular choice of the importance distribution is a prior 
distribution π(xip

k |x
ip
0:k− 1,Yk) = p(xip

k |x
ip
k− 1). Here based on the PF method, 

similar to Ref. [12], the Probability Density Function (PDF) of RUL at the 
current cycle number M can be calculated through the following 
equation: 

RUL(x) =
1

Np

∑Np

ip=1
δ

(

M+ x − argmin
k

(

aip
M⋅
(

bip
M + k

)cip
M
< 0.8

))

, (25)  

where random variable x denotes the remaining useful lifetime. Given 
the PDF in Eq. (25), the RUL confidence interval and point estimation 
can both be estimated. 

In conclusion, the process of PF-based RUL prediction can be 
generally divided into five steps: Initialization, Prediction, Update, 
Resampling and Estimating. 

Step 1: Initialization(k ¼ 0) 

First, draw Np particles from prior distribution π(x0). Then equally 
assign the weight ωip

0 of these Np particles, ωip
0 = 1/Np, ip = 1,2,…, Np. 

Step 2: Prediction(k ¼ 1,2,3,…) 

Using state function (17) to propagate particles from distribution 
π(xk|x

ip
k− 1), ip = 1,2,…,Np. 

Step 3: Update(k ¼ 1,2,3,…) 

First update the weights of each particle based on Eq. (24), and then 
normalize the updated weights using Eq. (22). Finally use Eq. (23) to 
estimate the system states. 

Step 4: Resampling(k ¼ 1,2,3,…) 
Step 4 is devoted to verifying whether the effective particle number 
NE falls below the threshold NT . An estimator based on rule of thumb 
is given by[36] 

N̂ E =
1

∑Np

j=1

(
ωj

k

)2
. (26)   

Then conduct the resampling process when N̂E < NT. 

Step 5: Estimating 

Estimate RUL of the battery using PDF (25). 

4. Experimental results 

This Section focuses on the experimental verification of the proposed 
power model. First, Section 4.1 illustrates the specific experimental 
procedure and data acquisition. Then, the model fitting and extrapola
tion results are discussed in Section 4.2. Finally, Section 4.3 concentrates 
on verifying the RUL prediction results based on the power model. 

4.1. Experimental data 

The experimental setup, as shown in Fig. 4, is same as in [12,37]. The 
setup includes a Votsch temperature chamber to control the ambient 
temperature of the batteries and an Arbin BT2000 battery test system to 
load and sample the lithium-ion batteries. To control the whole exper
iment and log the test data, a computer equipped with Arbin’s Mits 
Pro-software is used. The experimental data are then processed and 
analyzed using a PC. 

Four lithium iron phosphate (LFP) batteries with 18,650 type were 
tested in this experiment, and their basic parameters are tabulated in 
Table 3. The procedure involved a constant current charge-discharge life 
cycle test, with each cycle comprising of a 1C charge process under 
constant current and constant voltage mode, followed by a 1C discharge 
process. The cut-off voltages for the charge and discharge processes were 
3.6 V and 2 V, respectively, while the end of charge current for the 
charge process was 0.05C. In other words, the batteries were fully 
charged and discharged in each cycle, with the depth of charge and 
discharge both equal to 100%. To reduce experiment time and envi
ronmental noise effects, the temperature stress was increased to 45℃. 
The accelerated experiment lasts until the capacity drops below 80% of 
the nominal capacity, which is same as the battery failure threshold 
[12]. The maximum remaining capacity is then calculated using the 
standard Coulomb counting method [38], and the collected capacity is 
used to verify the proposed model and RUL prediction method. 
Throughout the whole paper, normalized capacity, which is defined as 

Table 4 
Quantitative extrapolation accuracy in Fig. 5.  

Figure Model MSE RMSE MAE 

Fig. 5(a) and 
(b) 

CE model 0.00128 0.03575 0.02710 
Square-root-of-time model 0.00139 0.03726 0.03399 
Power model 0.00020 0.01424 0.00991 
Two-term logarithmic 
model 

0.00724 0.08508 0.07068 

Two-term exponential 
model 

0.00272 0.05213 0.04504 

Quadratic polynomial 
model 

0.01600 0.12648 0.09282 

One-term exponential 
model 

0.00391 0.06255 0.05493 

Fig. 5(c) and 
(d) 

CE model 0.00014 0.01196 0.01012 
Square-root-of-time model 0.00344 0.05865 0.05435 
Power model 0.00008 0.00892 0.00811 
Two-term logarithmic 
model 

0.00377 0.06137 0.04900 

Two-term exponential 
model 

0.00069 0.02631 0.02133 

Quadratic polynomial 
model 

0.00148 0.03844 0.02938 

One-term exponential 
model 

0.00092 0.03029 0.02521 

Fig. 5(e) and (f) CE model 0.03688 0.19203 0.17026 
Square-root-of-time model 0.00769 0.08770 0.07817 
Power model 0.00077 0.02777 0.02630 
Two-term logarithmic 
model 

0.01234 0.11108 0.08722 

Two-term exponential 
model 

0.00619 0.07866 0.06580 

Quadratic polynomial 
model 

10.0181 3.16514 2.36965 

One-term exponential 
model 

0.01718 0.13107 0.11489 

Fig. 5(g) and 
(h) 

CE model 0.03725 0.19301 0.16920 
Square-root-of-time model 0.01303 0.11416 0.10129 
Power model 0.00130 0.03602 0.02913 
Two-term logarithmic 
model 

0.00471 0.06864 0.05123 

Two-term exponential 
model 

0.00172 0.04152 0.03904 

Quadratic polynomial 
model 

2.32616 1.52518 1.15347 

One-term exponential 
model 

0.00301 0.05488 0.04671  
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the ratio of the maximum remaining capacity in initial status to the 
nominal capacity, is used to indicate the battery state of health. 

4.2. Results of modeling 

To analyze the model precision based on the model-evaluation data, 
the first 5% and 15% data is used for fitting. Fig. 5 plots the fitting curve 
and predicting curve with the real degradation path, with a comparison 
of other models listed in Table 2. Obviously, the closer the model curve 
is to the real data, the fitting and prediction effect of the model will be, 
and their quantitative results are listed in Table 4. Two battery cells are 
used here for testing, while others are used for training. In Fig. 5(a) and 
(c), the first 15% data are used for fitting and the last 85% data is used 
for extrapolation, and their corresponding extrapolation errors are 
shown in Fig. 5(b) and (d). Besides, in Fig. 5(e) and (g), the first 5% data 
are used for fitting and the last 95% data are used for extrapolation, and 
the corresponding extrapolation errors are shown in Fig. 5(f) and (h). In 
Fig. 5(a), (c), (e), and (g), results show that compared with extrapolation 

Fig. 6. Online RUL predictions by the power model (left) and the square-root-of-time model (right): (a-b) predictions from the first 1/2 of the lifetime; (c-d) pre
dictions from the first 2/3 of the lifetime; (e-f) predictions from the first 3/4 of the lifetime. 

Table 5 
RUL prediction accuracy of Fig. 6.  

Prediction 
Rotation 

True 
RUL 

Model Absolute 
Error 

Relative 
Error 

1/2 of lifetime 46 Power model 4.33 9.4% 
Square-root-of- 
time model 

9.92 21.6% 

2/3 of lifetime 31 Power model 1.47 4.7% 
Square-root-of- 
time model 

6.94 22.4% 

3/4 of lifetime 24 Power model 0.80 3.3% 
Square-root-of- 
time model 

4.02 16.8%  
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deviation, the fitting deviation is so small that can be generally ignored. 
Thus, the quantitative extrapolation deviation is mainly discussed in 
Table 4, and we analyze the extrapolation results in Fig. 5 in detail. 

In Fig. 5(a) and (e), it is obvious that the extrapolation accuracy of 
the power model is the highest among these methods. The 

corresponding quantitative results in Table 4 also supports that result: 
the MSE, RMSE and MAE of the power model are the smallest. In Fig. 5 
(c), at the beginning of extrapolation (almost from 800 to 1500 cycles), 
the power model and CE model are very close, but in the second half 
(1500–2200), the power model shows great advantages to other models. 
Besides, according to quantitative results in Line 11 of Table 4, the MSE 
of the power model equaling 0.0008 is also the smallest among the 
comparison models. In Fig. 5(g) and (h), in the main part (almost from 
200 to 1800 cycles), the power model performs the best among the 
comparison 6 methods. But at the end of the cycle (almost from 1800 to 
2300), the two-term exponential model slightly exceeds the power 
model. However, the corresponding capacity of this part is lower than 
0.75. As mentioned, in practical problems, capacity lower than 80% of 
the nominal level usually means the battery has reached its lifetime. 
Thus, the end of the cycle (1800–2300) corresponding to nominal ca
pacity level lower than 0.75 has limited practical value for RUL pre
diction. Besides, from the quantitative indices in Table 4, the MSE 
0.0013 of the proposed power model is also the smallest among these 7 
models, thus, the power model generally performs best in Fig. 5(g). 

Fig. 7. Online RUL predictions by the power model (left) and the CE model (right): (a-b) predictions from the first 1/2 of the lifetime; (c-d) predictions from the first 
2/3 of the lifetime; (e-f) predictions from the first 3/4 of the lifetime. 

Table 6 
RUL prediction accuracy of Fig. 7.  

Prediction 
Rotation 

True 
RUL 

Model Absolute 
Error 

Relative 
Error 

1/2 of lifetime 31 Power model 4.12 13.3% 
Columbic 
model 

6.41 20.7% 

2/3 of lifetime 21 Power model 2.30 11.0% 
Columbic 
model 

4.78 22.8% 

3/4 of lifetime 16 Power model 0.66 4.1% 
Columbic 
model 

3.75 23.4%  
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In conclusion, results in Fig. 5 and Table 4 show that among all the 
models, the power model has the smallest MSE, RMSE, and MAE. 
Compared with traditional square-root-of-time model, its extrapolation 
prediction accuracy has been greatly improved. Thus, from the 
perspective of fitting and extrapolation, the power model is 
recommended. 

4.3. Results of RUL prediction 

After verifying the fitting and extrapolation property model, in this 
section, the online RUL prediction based on the power model is con
ducted, compared with that based on the square-root-of-time model and 
the CE model. For ease of understanding and presentation, the capacity 
data are sampled every 10 cycles. 

Fig. 6 shows the RUL prediction of Cell A2 based on the power model 
and the square-root-of-time model, with predictions made at the 1/2, 2/ 
3, 3/4 lifetime points, respectively. Table 5 tabulates the quantitative 
indices of Fig. 6. In each prediction, the prediction interval of the power 
model (on the left) is not only narrower, but also has more covering rate 
to the real degradation path than the compared square-root-of-time 
model (on the right). This indicates the RUL prediction accuracy based 
on the proposed power model is significantly higher than that based on 
the square-root-of-time model. The quantitative indices in Table 5 also 
support the above-mentioned conclusion: the relative errors of proposed 
model in all cases are significantly lower than those of the square-root- 
of-time model. 

As in Ref. [12], Yang et al. proposed a semi-empirical CE model, and 
verified the CE model outperformed the traditional square-root-of-time 
model in terms of online RUL prediction. In this section, we also add a 
new dataset to compare the prediction performance of proposed model 
with the CE model. Fig. 7 and Table 6 show the RUL prediction results 
based on Cell A3. 

Results show the proposed power outperforms the CE model in terms 
of prediction accuracy on the new dataset. To sum up, RUL prediction 
based on the power model has better prediction accuracy, thus is 
recommended. 

5. Conclusion 

Motivated by two concerns of the widely-used square-root-of-time 
model, this paper proposes a new power model to depict the degradation 
path of LFP batteries. The proposed power model is obtained by three- 
step transformation of the traditional square-root-of-time model, 
where the three steps include model extension of power exponent, 
model extension of cycle number and model simplification. Then several 
representative properties of the power model are investigated for ap
plications. For online RUL prediction based on the proposed model, an 
RUL prediction method, including an offline parameter estimation al
gorithm and a PF algorithm, is proposed. The output point estimators of 
the offline algorithm are substituted as the initial value of the PF algo
rithm for further online RUL prediction. 

The LFP battery degradation experiment is conducted to verify the 
effectiveness of the power model and the RUL prediction algorithm. 
First, based on the experiment data, the fitting and extrapolation accu
racy of the proposed power model is verified. Fitting results show that 
the power model almost performs as well as the six representative 
comparison models, but extrapolation results indicate the power model 
has smaller predicting errors measured by MSE, RMSE and MAE than 
those competing models. Second, the experiment data are also used to 
verify the online RUL prediction properties of the power model. Results 
indicate that the online prediction accuracy based on the power model 
outperforms the square-root-of-time model and the CE model. Thus, the 
RUL prediction method based on the power model is recommended. 

In the future, other factors, such as temperature, depth-of-charge, 
and depth-of-discharge, are also worth studying. The quantified re
lationships between these factors and the power model can also be 

constructed, and these relationships can be modelled and further used 
for RUL prediction in practice. 
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